Fracture Model Calibration

Liberty Engineering Solution

Frac Modeling Challenge

Too Many Unknowns

Critical Model Input Parameters

- Fluid rheology
- Wallbuilding coefficient
- Pressure-dependent leakoff
- Closure stress in pay
- Young's modulus
- Permeability and pore pressure
 - Closure stress in neighboring layers
 - Fracture complexity
 - Tip effects
 - Composite layering and width decoupling
- Cluster efficiency
- Stress interaction between fracs
- Heterogeneity and faulting

Color Key: "Known knowns": Relatively easy & reliable measurement "Known unknowns": Harder to measure directly and less reliable "Unknown knowns: Impossible to measure directly and physics not well understood "Unknown unknowns": Impossible to measure on all required scales

Frac Modeling Challenge

Conducting More Measurements Can Help

Critical Model Input Parameters

- Fluid rheology
- Wallbuilding coefficient
- Pressure-dependent leakoff
- Closure stress in pay
- Young's modulus
- Permeability and pore pressure
- Closure stress in neighboring layers
- Fracture complexity
- Tip effects
- Composite layering and width decoupling
- Cluster efficiency
- Stress interaction between fracs
- Heterogeneity and faulting

Color Key: "Known knowns": Relatively easy & reliable measurement "Known unknowns": Harder to measure directly and less reliable "Unknown knowns: Impossible to measure directly and physics not well understood "Unknown unknowns": Impossible to measure on all required scales

Improved Measurements

Frac Modeling Challenge

Locking In Unknowns through Model Calibration

Critical Model Input Parameters

- Fluid rheology
- Wallbuilding coefficient
- Pressure-dependent leakoff
- Closure stress in pay
- Young's modulus
- Permeability and pore pressure
- Closure stress in neighboring layers
- Fracture complexity
- Tip effects
- Composite layering and width decoupling
- Cluster efficiency
- Stress interaction between fracs
- Heterogeneity and faulting

Color Key: "Known knowns": Relatively easy & reliable measurement "Known unknowns": Harder to measure directly and less reliable "Unknown knowns: Impossible to measure directly and physics not well understood "Unknown unknowns": Impossible to measure on all required scales

Improved Measurements

Model

Calibration

- Net pressure
- Fracture length
- Fracture height
- Fracture width and conductivity
- Number of efficient clusters

LIBERTY

Frac Model Calibration Example

Net Pressure Match

Frac Model Calibration Example

Net Pressure Match and Micro-Seismic Events Match

0.1

0.2

0.3

0.4

0.5

0.6

250.0

450.0

350.0

Time (min)

150.0

Calibrated Modeling Approach

Modeling AND Measuring

Fracture Growth Models Incomplete Physical Understanding

Direct Diagnostics Not Predictive

Calibrated models more realistically predict how fractures will grow for alternative designs

LIBERTYFRAC.COM